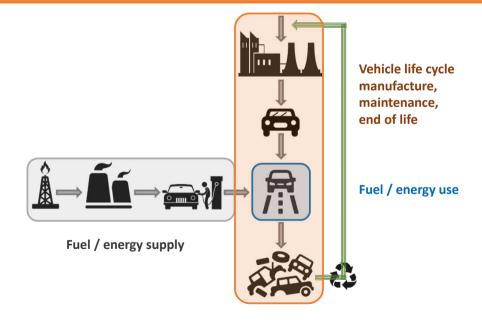
LIFE CYCLE ANALYSIS FOR VEHICLES RUNNING ON NGV AND BIONGV

20 SEPTEMBER 2019

CYPRIEN TERNEL, ANNE BOUTER, JORIS MELGAR



OBJECTIVES: TAKE INTO ACCOUNT ALL GREENHOUSE GAS EMISSIONS AND POSITION NGV AND BIONGV VEHICLES

- \square Today, **European regulations** and the **95 g CO**₂/km by **2021** objective for all manufacturer sales:
 - only concern emissions from a vehicle's exhaust system
 - makes no distinction between CO₂ of fossil origin (gasoline, diesel, NGV) and CO₂ of biogenic origin (liquid or gas biofuel)
- ☐ European research is under way to take into account **total carbon emissions** over the vehicle's **life cycle**: **Life Cycle Analysis** methodology

European research under way

Scope of European regulations

Vehicle life cycle

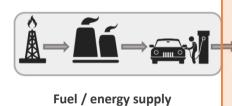
Fuel / energy use

manufacture, maintenance,

end of life

METHODOLOGY USED: LIFE CYCLE ANALYSIS (LCA)

Methodology governed by ISO standard 14040-44


- that evaluates the potential impacts on the environment of a system (product, service), throughout its life cycle (from extraction of the raw materials through to waste disposal)
- → multi-stage
- → multi-criteria

Functional Unit: "1 person traveling 1 km"

- The vehicle life cycle: from manufacture to recycling
- The fuel life cycle: production, refining, transport, distribution, combustion

THE STUDY COVERS A BROAD SPECTRUM

MOBILITE DURABLE

- 5 vehicle segments considered
- Various degrees of electrification
- 2 time horizons: 2019 and 2030
- 2 gas sectors: NGV and bioNGV

Medium class vehicle (C)

Upper class vehicle (D)

Commercial vehicle

2019

Bus

Urban delivery HD (12 t.)

THE STUDY IS BASED ON ROBUST MODELING VIA THE ESTIMATION OF REAL CONSUMPTION

Hypotheses and projections

- Energy densities
- Component efficiency
- Vehicle characteristics

2019

2030

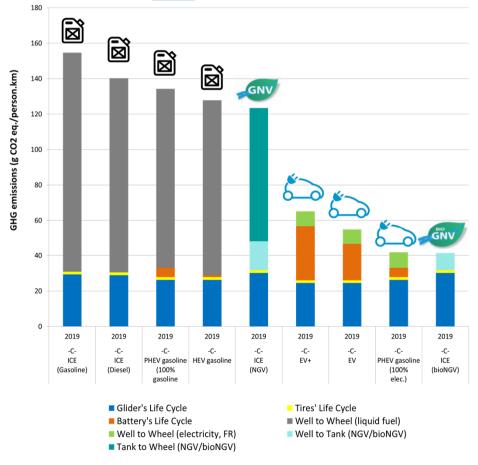
Fleet modeling for 2019 & 2030

Vehicle simulators based on cycles

Simulation serving LCA

Estimation of consumption in real conditions

Life cycle Analysis (LCA)

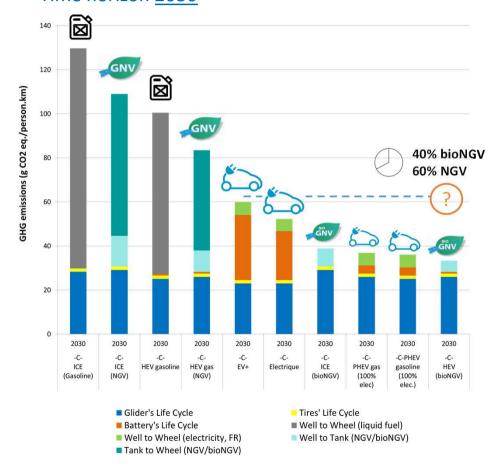




SEGMENT C: THE BIONGV VEHICLE DELIVERS BETTER RESULTS IN 2019 IN TERMS OF CLIMATE CHANGE

Potential impacts on climate change (segment C)

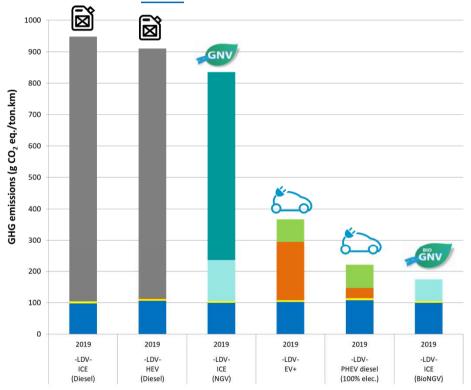
Time horizon 2019


- ☐ Emissions related to the combustion of bioNGV equal to 0
 - → Carbon of biogenic origin
- ☐ French electric mix (green)
- □ CO₂ emitted during battery manufacture (orange)
- ☐ 10 years of ownership, 15,000 km/year
- ➤ The NGV vehicle emits fewer greenhouse gases than its IC competitors.
- ➤ The vehicle running on bioNGV delivers better results, all powertrains combined: a 36% saving compared to the 60kWh electric vehicle.

SEGMENT C: THE BIONGV VEHICLE MAINTAINS BETTER RESULTS IN 2030 WITH A HYBRID POWERTRAIN

Potential impacts on climate change (segment C) *Time horizon 2030*

- ➤ The NGV vehicle emits fewer greenhouse gases than its IC competitors.
- ➤ The vehicle running on bioNGV delivers better results, all powertrains combined.
- ➤ A 60% NGV- 40% bioNGV mix used in a non-plugin hybrid vehicle gives the same results as an electric vehicle with an extended range.



THE LIGHT COMMERCIAL VEHICLE RUNNING ON BIONGV IS THE BEST ALTERNATIVE

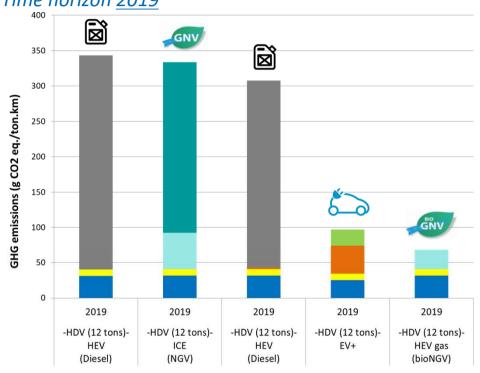
Potential impacts on climate change (light commercial vehicle)

Time horizon 2019

☐ 12 years of ownership, 16,200 km/year

- ➢ In 2019, a light commercial vehicle running on bioNGV emits 174 g of CO₂/t.km versus 366 g CO₂/t.km for the 80 kWh electric light commercial vehicle (a saving of 52%).
- > In 2030, the same results are observed.

- Glider's Life Cycle
 Battery's Life Cycle
 Well to Wheel (electricity, FR)
 Tank to Wheel (NGV/bioNGV)
- Tires' Life Cycle■ Well to Wheel (liquid fuel)■ Well to Tank (NGV/bioNGV)



THE 12-TON HEAVY TRUCK RUNNING ON BIONGV IS THE BEST CANDIDATE

Potential impacts on climate change (12t heavy truck)

Time horizon 2019

☐ 12 years of ownership, 31,000 km/year

➤ In 2019, the 12-ton heavy truck running on bioNGV outperforms other powertrains: a saving of 35% compared to the 240 kWh electric model.

- Glider's Life Cycle
 Battery's Life Cycle
 Well to Wheel (electricity, FR)
 Tank to Wheel (NGV/bioNGV)
- Tires' Life Cycle■ Well to Wheel (liquid fuel)■ Well to Tank (NGV/bioNGV)

Cyprien Ternel

Cyprien.ternel@ifpen.fr

****** +33 (0)1 47 52 74 69

Anne Bouter

Anne.bouter@ifpen.fr

+33 (0)1 47 52 50 45

Joris Melgar

Joris.melgar@ifpen.fr

+33 (0)1 47 52 61 70

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

